我的账户
澜海源创

教育培训在线课程

亲爱的游客,欢迎!

已有账号,请

如尚未注册?

二次型的意义是什么?有什么应用?

2023-11-20 16:28

通过矩阵来研究二次函数(方程),这就是线性代数中二次型的重点。 1 二次函数(方程)的特点 1.1 二次函数 最简单的一元二次函数就是: 给它增加一次项不会改变形状: 增加常数项就更不用说了,更不会改变形状。 ...

AI小编归纳总结

**矩阵魔法:二次型的几何诗篇** 二次函数与方程的精髓藏在"二次项"里,如同画布上决定轮廓的浓墨。一元或多元,增减线性项如同调节阴影,而二次矩阵才是图形的基因密码。 用对称矩阵编码二次型,数学家的魔法就此展开: - **圆锥曲线协奏曲**:圆、椭圆、双曲线竟是同一支线性变换舞曲的不同节拍,三维圆锥与平面相遇的刹那,矩阵悄然书写着它们的血缘。 - **扶正的艺术**:歪斜的椭圆?特征值分解如执剑,劈开旋转与拉伸,正交矩阵为尺,对角矩阵为墨,顷刻绘出端正的几何图腾。 - **正定的启示**:矩阵特征值皆为正时,函数图像如碗承露;若含负值,则成马鞍驰骋。半正定似碗中浅水,不定者如风暴中的海面。 线性代数以矩阵为透镜,将二次型的几何之美折射为代数光谱,在数学宇宙中织就璀璨星图。 [本文内容由人工智能深度求索 - DeepSeek辅助生成,仅供参考]

通过矩阵来研究二次函数(方程),这就是线性代数中二次型的重点。

1 二次函数(方程)的特点

1.1 二次函数

最简单的一元二次函数就是:

给它增加一次项不会改变形状:

增加常数项就更不用说了,更不会改变形状。

1.2 二次方程

下面是一个二元二次方程:

给它增加一次项也不会改变形状,只是看上去有些伸缩:

1.3 小结

对于二次函数或者二次方程,二次部分是主要部分,往往研究二次这部分就够了。

2 通过矩阵来研究二次方程

因为二次函数(方程)的二次部分最重要,为了方便研究,我们把含有

个变量的二次齐次函数:

称为二次型。

2.1 二次型矩阵

实际上我们可以通过矩阵来表示二次型:

更一般的:

可以写成更线代的形式:

所以有下面一一对应的关系:

在线代里面,就是通过一个对称矩阵,去研究某个二次型。

2.2 通过矩阵来研究有什么好处

2.2.1 圆锥曲线

我们来看下,这是一个圆:

我们来看改变一下二次型矩阵:

哈,原来椭圆和圆之间是线性关系呐(通过矩阵变换就可以从圆变为椭圆)。

继续:

咦,双曲线和圆之间也是线性关系。

其实圆、椭圆、双曲线之间关系很紧密的,统称为圆锥曲线,都是圆锥体和平面的交线:

从上面动图可看出,一个平面在圆锥体上运动,可以得到圆、椭圆、双曲线,这也是它们之间具有线性关系的来源(平面的运动实际上是线性的)。

2.2.2 规范化

再改变下矩阵:

这个椭圆看起来有点歪,不太好处理,我们来把它扶正,这就叫做规范化。

如果我们对矩阵有更深刻的认识,那么要把它扶正很简单。

往下读之前,请先参看我在 如何理解特征值 下的回答。

首先,矩阵代表了运动,包含:

  • 旋转
  • 拉伸
  • 投影

对于方阵,因为没有维度的改变,所以就没有投影这个运动了,只有:

  • 旋转
  • 拉伸

具体到上面的矩阵:

我把这个矩阵进行特征值分解:

注意我上面提到的正交很重要,为什么重要,可以参看我在 如何理解特征值

对于二次型矩阵,都是对称矩阵,所以特征值分解总可以得到正交矩阵与对角矩阵。

特征值分解实际上就是把运动分解了:

那么我们只需要保留拉伸部分,就相当于把矩阵扶正(图中把各自图形的二次型矩阵标注出来了):

所以,用二次型矩阵进行规范化是非常轻松的事情。

2.2.3 正定

正定是对二次函数有效的一个定义,对方程无效。

对于二次型函数,

  • ,则 为正定二次型, 为正定矩阵
  • ,则 为半正定二次型, 为半正定矩阵
  • ,则 为负定二次型, 为负定矩阵
  • ,则 为半负定二次型, 为半负定矩阵
  • 以上皆不是,就叫做不定

从图像上看,这是正定:

半正定:

不定:

既然二次型用矩阵来表示了,那么我们能否通过矩阵来判断是否正定呢?

下面我分别给出了二次型的图形,以及对应的特征值矩阵的图形,你可以自己动手试试(3D 窗口可以通过鼠标旋转,方便观察),得出自己的结论:

此处有互动内容,点击此处前往操作。

起码,我们可以观察出这个结论,特征值都大于 0,则为正定矩阵。

3 总结

在很多学科里,二次型都是主要研究对象,很多问题都可以转为二次型。线代作为一门数学工具,在二次型的研究中也发挥了很好的作用。

最新版本(可能有后继更新):如何理解二次型?

更多内容推荐【马同学图解数学系列

AI小编归纳总结

**矩阵魔法:二次型的几何诗篇** 二次函数与方程的精髓藏在"二次项"里,如同画布上决定轮廓的浓墨。一元或多元,增减线性项如同调节阴影,而二次矩阵才是图形的基因密码。 用对称矩阵编码二次型,数学家的魔法就此展开: - **圆锥曲线协奏曲**:圆、椭圆、双曲线竟是同一支线性变换舞曲的不同节拍,三维圆锥与平面相遇的刹那,矩阵悄然书写着它们的血缘。 - **扶正的艺术**:歪斜的椭圆?特征值分解如执剑,劈开旋转与拉伸,正交矩阵为尺,对角矩阵为墨,顷刻绘出端正的几何图腾。 - **正定的启示**:矩阵特征值皆为正时,函数图像如碗承露;若含负值,则成马鞍驰骋。半正定似碗中浅水,不定者如风暴中的海面。 线性代数以矩阵为透镜,将二次型的几何之美折射为代数光谱,在数学宇宙中织就璀璨星图。 [本文内容由人工智能深度求索 - DeepSeek辅助生成,仅供参考]

  • 北京市
  • 海淀区
  • 教育咨询企业内训
致力于研究企业一线组织员工能力成长与一线组织需求对接!
粉丝0 阅读532 回复0
关注我们
专注职业素养教育

客服电话:010-82782858

客服邮箱:i@lhservice.com

周一至周五 9:00-18:00

地址:北京市海淀区上地三街中黎科技园一号楼二层A227-237

澜海源创教育 - 引领职业教育发展!( 京ICP备08004045号-3 )

Powered by LHedu! X3.5© 2001-2013 Lhservice Inc.